3.248 \(\int \sec ^4(e+f x) (a+b \sec ^2(e+f x))^{3/2} \, dx\)

Optimal. Leaf size=165 \[ -\frac {(a-5 b) (a+b)^2 \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{16 b^{3/2} f}+\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{5/2}}{6 b f}-\frac {(a-5 b) \tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{24 b f}-\frac {(a-5 b) (a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{16 b f} \]

[Out]

-1/16*(a-5*b)*(a+b)^2*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/b^(3/2)/f-1/16*(a-5*b)*(a+b)*(a+b
+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/b/f-1/24*(a-5*b)*tan(f*x+e)*(a+b+b*tan(f*x+e)^2)^(3/2)/b/f+1/6*tan(f*x+e)*(a
+b+b*tan(f*x+e)^2)^(5/2)/b/f

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 165, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4146, 388, 195, 217, 206} \[ -\frac {(a-5 b) (a+b)^2 \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{16 b^{3/2} f}+\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{5/2}}{6 b f}-\frac {(a-5 b) \tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{24 b f}-\frac {(a-5 b) (a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{16 b f} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^4*(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

-((a - 5*b)*(a + b)^2*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(16*b^(3/2)*f) - ((a - 5
*b)*(a + b)*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(16*b*f) - ((a - 5*b)*Tan[e + f*x]*(a + b + b*Tan[e +
 f*x]^2)^(3/2))/(24*b*f) + (Tan[e + f*x]*(a + b + b*Tan[e + f*x]^2)^(5/2))/(6*b*f)

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rubi steps

\begin {align*} \int \sec ^4(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx &=\frac {\operatorname {Subst}\left (\int \left (1+x^2\right ) \left (a+b+b x^2\right )^{3/2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{5/2}}{6 b f}-\frac {(a-5 b) \operatorname {Subst}\left (\int \left (a+b+b x^2\right )^{3/2} \, dx,x,\tan (e+f x)\right )}{6 b f}\\ &=-\frac {(a-5 b) \tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{24 b f}+\frac {\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{5/2}}{6 b f}-\frac {((a-5 b) (a+b)) \operatorname {Subst}\left (\int \sqrt {a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{8 b f}\\ &=-\frac {(a-5 b) (a+b) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{16 b f}-\frac {(a-5 b) \tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{24 b f}+\frac {\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{5/2}}{6 b f}-\frac {\left ((a-5 b) (a+b)^2\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{16 b f}\\ &=-\frac {(a-5 b) (a+b) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{16 b f}-\frac {(a-5 b) \tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{24 b f}+\frac {\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{5/2}}{6 b f}-\frac {\left ((a-5 b) (a+b)^2\right ) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{16 b f}\\ &=-\frac {(a-5 b) (a+b)^2 \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{16 b^{3/2} f}-\frac {(a-5 b) (a+b) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{16 b f}-\frac {(a-5 b) \tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{24 b f}+\frac {\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{5/2}}{6 b f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 9.17, size = 400, normalized size = 2.42 \[ \frac {e^{i (e+f x)} \cos ^3(e+f x) \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \left (\frac {3 (a-5 b) (a+b)^2 \log \left (\frac {4 i f \sqrt {a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}-4 \sqrt {b} f \left (-1+e^{2 i (e+f x)}\right )}{1+e^{2 i (e+f x)}}\right )}{\sqrt {a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}}-\frac {i \sqrt {b} \left (-1+e^{2 i (e+f x)}\right ) \left (3 a^2 \left (1+e^{2 i (e+f x)}\right )^4+2 a b \left (50 e^{2 i (e+f x)}+11 e^{4 i (e+f x)}+11\right ) \left (1+e^{2 i (e+f x)}\right )^2+b^2 \left (100 e^{2 i (e+f x)}+298 e^{4 i (e+f x)}+100 e^{6 i (e+f x)}+15 e^{8 i (e+f x)}+15\right )\right )}{\left (1+e^{2 i (e+f x)}\right )^6}\right ) \left (a+b \sec ^2(e+f x)\right )^{3/2}}{12 \sqrt {2} b^{3/2} f (a \cos (2 e+2 f x)+a+2 b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^4*(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

(E^(I*(e + f*x))*Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*Cos[e + f*x]^3*(((-I)*Sqrt[b]
*(-1 + E^((2*I)*(e + f*x)))*(3*a^2*(1 + E^((2*I)*(e + f*x)))^4 + 2*a*b*(1 + E^((2*I)*(e + f*x)))^2*(11 + 50*E^
((2*I)*(e + f*x)) + 11*E^((4*I)*(e + f*x))) + b^2*(15 + 100*E^((2*I)*(e + f*x)) + 298*E^((4*I)*(e + f*x)) + 10
0*E^((6*I)*(e + f*x)) + 15*E^((8*I)*(e + f*x)))))/(1 + E^((2*I)*(e + f*x)))^6 + (3*(a - 5*b)*(a + b)^2*Log[(-4
*Sqrt[b]*(-1 + E^((2*I)*(e + f*x)))*f + (4*I)*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]*f)
/(1 + E^((2*I)*(e + f*x)))])/Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])*(a + b*Sec[e + f*x
]^2)^(3/2))/(12*Sqrt[2]*b^(3/2)*f*(a + 2*b + a*Cos[2*e + 2*f*x])^(3/2))

________________________________________________________________________________________

fricas [A]  time = 1.99, size = 470, normalized size = 2.85 \[ \left [-\frac {3 \, {\left (a^{3} - 3 \, a^{2} b - 9 \, a b^{2} - 5 \, b^{3}\right )} \sqrt {b} \cos \left (f x + e\right )^{5} \log \left (\frac {{\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} + 8 \, {\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right ) + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) - 4 \, {\left ({\left (3 \, a^{2} b + 22 \, a b^{2} + 15 \, b^{3}\right )} \cos \left (f x + e\right )^{4} + 8 \, b^{3} + 2 \, {\left (7 \, a b^{2} + 5 \, b^{3}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{192 \, b^{2} f \cos \left (f x + e\right )^{5}}, -\frac {3 \, {\left (a^{3} - 3 \, a^{2} b - 9 \, a b^{2} - 5 \, b^{3}\right )} \sqrt {-b} \arctan \left (-\frac {{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {-b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{2 \, {\left (a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right )^{5} - 2 \, {\left ({\left (3 \, a^{2} b + 22 \, a b^{2} + 15 \, b^{3}\right )} \cos \left (f x + e\right )^{4} + 8 \, b^{3} + 2 \, {\left (7 \, a b^{2} + 5 \, b^{3}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{96 \, b^{2} f \cos \left (f x + e\right )^{5}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/192*(3*(a^3 - 3*a^2*b - 9*a*b^2 - 5*b^3)*sqrt(b)*cos(f*x + e)^5*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 +
8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 +
b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) - 4*((3*a^2*b + 22*a*b^2 + 15*b^3)*cos(f*x + e)^4 + 8
*b^3 + 2*(7*a*b^2 + 5*b^3)*cos(f*x + e)^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(b^2*f*co
s(f*x + e)^5), -1/96*(3*(a^3 - 3*a^2*b - 9*a*b^2 - 5*b^3)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*c
os(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*c
os(f*x + e)^5 - 2*((3*a^2*b + 22*a*b^2 + 15*b^3)*cos(f*x + e)^4 + 8*b^3 + 2*(7*a*b^2 + 5*b^3)*cos(f*x + e)^2)*
sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(b^2*f*cos(f*x + e)^5)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \sec \left (f x + e\right )^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*sec(f*x + e)^4, x)

________________________________________________________________________________________

maple [C]  time = 2.32, size = 2519, normalized size = 15.27 \[ \text {Expression too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^4*(a+b*sec(f*x+e)^2)^(3/2),x)

[Out]

-1/48/f*sin(f*x+e)*(-54*sin(f*x+e)*cos(f*x+e)^6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos
(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+
cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*
a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a
*b^2-22*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^3*a*b^2-17*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*
cos(f*x+e)^5*a^2*b+17*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^4*a^2*b+22*((2*I*a^(1/2)*b^(1/2)+a-b)
/(a+b))^(1/2)*cos(f*x+e)^2*a*b^2+32*cos(f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b^2-32*cos(f*x+e)^5
*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b^2+9*sin(f*x+e)*cos(f*x+e)^6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e
)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^
(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^
(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a^2*b+27*sin(f*x+e)
*cos(f*x+e)^6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(
1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF
((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)
-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a*b^2-18*sin(f*x+e)*cos(f*x+e)^6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1
/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*
cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/s
in(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b
)/(a+b))^(1/2))*a^2*b+3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^6*a^3-3*((2*I*a^(1/2)*b^(1/2)+a-b)/
(a+b))^(1/2)*cos(f*x+e)^7*a^3-8*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)*b^3-10*cos(f*x+e)^3*((2*I*a
^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^3+10*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^3-22*cos(f*x+e)
^7*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2*b-15*cos(f*x+e)^7*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b^2
+22*cos(f*x+e)^6*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2*b+15*cos(f*x+e)^6*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b
))^(1/2)*a*b^2-15*cos(f*x+e)^5*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^3+15*cos(f*x+e)^4*((2*I*a^(1/2)*b^(1/
2)+a-b)/(a+b))^(1/2)*b^3+8*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^3+6*sin(f*x+e)*cos(f*x+e)^6*2^(1/2)*((I*a
^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)
*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(
1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))
^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a^3-30*sin(f*x+e)*cos(f*x+e)^6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos
(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1
/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/
(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/
2)*b^(1/2)+a-b)/(a+b))^(1/2))*b^3-3*sin(f*x+e)*cos(f*x+e)^6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b
^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f
*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x
+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a^3+15*sin(f*x+e)*cos(f*x+e)^6*2
^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(
1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e)
)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)
/(a+b)^2)^(1/2))*b^3)*((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(3/2)/(-1+cos(f*x+e))/(b+a*cos(f*x+e)^2)^2/cos(f*x+e)^
3/b/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 243, normalized size = 1.47 \[ -\frac {\frac {3 \, {\left (a + b\right )}^{2} a \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{b^{\frac {3}{2}}} + \frac {3 \, {\left (a + b\right )}^{2} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{\sqrt {b}} - \frac {18 \, {\left (a + b\right )} a \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{\sqrt {b}} - 18 \, {\left (a + b\right )} \sqrt {b} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right ) - 12 \, {\left (b \tan \left (f x + e\right )^{2} + a + b\right )}^{\frac {3}{2}} \tan \left (f x + e\right ) - 18 \, \sqrt {b \tan \left (f x + e\right )^{2} + a + b} {\left (a + b\right )} \tan \left (f x + e\right ) - \frac {8 \, {\left (b \tan \left (f x + e\right )^{2} + a + b\right )}^{\frac {5}{2}} \tan \left (f x + e\right )}{b} + \frac {2 \, {\left (b \tan \left (f x + e\right )^{2} + a + b\right )}^{\frac {3}{2}} {\left (a + b\right )} \tan \left (f x + e\right )}{b} + \frac {3 \, \sqrt {b \tan \left (f x + e\right )^{2} + a + b} {\left (a + b\right )}^{2} \tan \left (f x + e\right )}{b}}{48 \, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

-1/48*(3*(a + b)^2*a*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b))/b^(3/2) + 3*(a + b)^2*arcsinh(b*tan(f*x + e)/sqrt
((a + b)*b))/sqrt(b) - 18*(a + b)*a*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b))/sqrt(b) - 18*(a + b)*sqrt(b)*arcsi
nh(b*tan(f*x + e)/sqrt((a + b)*b)) - 12*(b*tan(f*x + e)^2 + a + b)^(3/2)*tan(f*x + e) - 18*sqrt(b*tan(f*x + e)
^2 + a + b)*(a + b)*tan(f*x + e) - 8*(b*tan(f*x + e)^2 + a + b)^(5/2)*tan(f*x + e)/b + 2*(b*tan(f*x + e)^2 + a
 + b)^(3/2)*(a + b)*tan(f*x + e)/b + 3*sqrt(b*tan(f*x + e)^2 + a + b)*(a + b)^2*tan(f*x + e)/b)/f

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}}{{\cos \left (e+f\,x\right )}^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(e + f*x)^2)^(3/2)/cos(e + f*x)^4,x)

[Out]

int((a + b/cos(e + f*x)^2)^(3/2)/cos(e + f*x)^4, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}} \sec ^{4}{\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**4*(a+b*sec(f*x+e)**2)**(3/2),x)

[Out]

Integral((a + b*sec(e + f*x)**2)**(3/2)*sec(e + f*x)**4, x)

________________________________________________________________________________________